On Bounded Rationality in Cyber-Physical Systems Security: Game-Theoretic Analysis with Application to Smart Grid Protection

CPSR-SG 2016 – CPS Week 2016

Anibal Sanjab and Walid Saad
April 12, 2016
Vienna, Austria
Outline

• CPS Security and its Challenges
• CPS Security Games
• Bounded Rationality in CPS Security Games
• CPS Security Model
 • Attack diffusion model
 • Game-theoretic formulation
 • Bounded rationality
 • Case analysis: smart grid wide area protection
Cyber Physical Systems (CPS)

- **Cyber-physical systems**
 - Physical system
 - Cyber layer
- **Purpose:** smart systems

Smart Grid: “an electricity network that can intelligently integrate the actions of all users connected to it - generators, consumers and those that do both - in order to efficiently deliver sustainable, economic and secure electricity supplies” – European Technology Platform for Smart Grids 2035 Strategic Research Agenda
CPS Security - Exposed Vulnerability

• Stuxnet (2010):
 • Target: 14 industrial systems in Iran – plant for Uranium enrichment
 • Computer worm targeting control of industrial systems – Programmable Logic Controllers (PLC)

• Water (2000):
 • Target: Maroochy Water Services in Queensland, Australia
 • Block communication links with waste water pumping stations
 • 1 million liters of sewage water spill

• Transportation (2001):
 • Target: Port of Houston, TX, USA
 • Denial-of-Service over its ship assistance system
CPS Security

• Cyber-Physical Systems:
 • Beneficial but vulnerable!
 • Solution: devise solutions to make systems less vulnerable, more robust, and more resilient to attacks.

• CPS Security Research:
 • Type of threats/attacks: data injection, DoS, time synchronization …
 • Purpose: prevention, detection, mitigation …
 • Area of research: smart grids, transportation systems, water distribution, smart cities …
 • Attack vs. Defense: Game Theory!
CPS Security Games

• What is Game Theory?
Set of mathematical tools to analyze strategic interaction and decision making between entities with interconnected interests.

• CPS Security Games:
 • Players: Attacker(s) and Defender(s)
 • Actions: set of attack strategies | set of defense strategies
 • Objective:
 • Attackers: optimize a payoff function reflecting
 • Level of caused damage to the system
 • Financial benefit that it can earn through attack, etc.
 • Defenders: optimize a payoff function reflecting
 • Deviation from normal operating state (minimize)
 • Operation performance level and/or amount of uncompromised resources (maximize)
Bounded Rationality

• Game theory requires *rationality*:
 • Players are purposeful: optimize an objective function
 • Players do not make mistakes
• Risk, stress, incomplete information, extreme complexity, constraints (time, etc.) → limited rationality
• Prone to making mistakes
 • 1965 Northeast blackout → 30 million people affected in Ontario and 8 U.S states → cause: Human mistake: incorrect setting of a protective relay by maintenance personnel!
Cognitive Hierarchy

- Perception over the skill levels of opponents
- Multiple thinking steps
 - Example: the beauty contest
- In criminology studies, attackers carry out a reconnaissance phase
 - Accuracy of their perception?
- k thinking steps:
 - Player assumes having most sophisticated strategy (level k)
 - Presume a probability distribution over the skill levels of opponents
 - Proportion of opponents at each thinking step $0 \rightarrow k - 1$
- CPS security application:
 - Example: defensive has highest knowledge of system model \rightarrow uses perception of adversaries skill levels distribution to design a defense strategy.
Beauty Contest – Cognitive Hierarchy

General Theory of Employment, Interest, and Money (1936) – John Keynes

Beauty contest game: A number of participants are asked to choose a number from 0 – 100. The player whose number is closest to 2/3 of the average of all chosen numbers wins.

Experimental group avg: 20 - 35
Cognitive Hierarchy

• Perception over the skill levels of opponents

• Multiple thinking steps
 • Example: the beauty contest

• In criminology studies, attackers carry out a reconnaissance phase
 • Accuracy of their perception?

• k thinking steps:
 • Player assumes having most sophisticated strategy (level k)
 • Presume a probability distribution over the skill levels of opponents
 • Proportion of opponents at each thinking step $0 \rightarrow k - 1$

• CPS security application:
 • Example: defensive has highest knowledge of system model \rightarrow uses perception of adversaries skill levels distribution to design a defense strategy.
CPS SECURITY MODEL

Game-Theoretic Formulation | Application to Smart Grids’ Security
Attack Diffusion Model

• CPS Model:
 - N_c cyber nodes, N_p physical nodes
 - $r_{c,p}$: weight interconnection between physical node p and cyber node c.
 - Weight of data sent by c on control action over p
 - $r_{c,p} = \Pr(p \text{ fails} | c \text{ has failed})$
 - Failure of c:
 - Implication: send corrupt data
 - Reason: cyber attack, misconfiguration,…
 - π_p: probability of failure of p due to failures in the cyber layer
 \[
 \pi_p = \sum_{c=1}^{N_c} r_{c,p} \kappa_c
 \]
Attack Diffusion Model

- \(R = [r_{c,p}]_{N_c \times N_p} \): cyber-physical interconnection matrix
- \(\pi = [\pi_1, \ldots, \pi_{N_p}] \in [0,1]^{N_p} \): failure probability vector of physical nodes
- \(\kappa = [\kappa_1, \ldots, \kappa_{N_c}] \in [0,1]^{N_c} \): failure probability vector of cyber nodes

\[
\pi_p = \sum_{c=1}^{N_c} r_{c,p} \kappa_c
\]

\[
\pi = \kappa R
\]

- \(f_p \): cost of failure of physical node \(p \)
- Expected total loss to system:

\[
E_f = \sum_{p=1}^{N_p} \pi_p f_p
\]
Game Formulation

• Under no attack:
 • \(\kappa = [\kappa_1, \ldots, \kappa_{N_c}] \) small \(\rightarrow \pi = [\pi_1, \ldots, \pi_{N_p}] \) small
 • Minimize \(E_f = \sum_{p=1}^{N_p} \pi_p f_p \) is a reliability evaluation problem.

• Under cyber-attack
 • \(c \) is attacked \(\rightarrow \kappa_c = 1 \rightarrow \pi \uparrow \rightarrow E_f \uparrow \)
 • \(c \) is defended \(\rightarrow \kappa_c = 0 \rightarrow \pi \downarrow \rightarrow E_f \downarrow \)

• Attacker vs. Defender Game
 • Players: defender \(d \), attacker \(a \)
 • Set of actions: which cyber nodes to attack/defend \(|S_d| = \binom{N_c}{n_d}, |S_a| = \binom{N_c}{n_a} \)
 • Utility function: \(U_d(s_d, s_a) = -U_a(s_d, s_a) = -E_f \)
 • \(s_i \in S_i, n_i = \) number of concurrently attacked/defended nodes
Bounded Rationality

• Under full rationality (standard game theory)
 • Defender and attacker play best response strategies
 → Full knowledge of $E_f = \sum_{p=1}^{N_p} \pi_p f_p$ is needed

• Defender vs Attacker
 • CPS are very complex → obtaining f (vector of f_p’s) is challenging
 • Solution: build own perception of $f \rightarrow \hat{f}_{i \in (a,d)}$
 • Level of thinking of $i \in (a, d)$: how close is \hat{f}_i to f
 • Higher level thinkers (Analogous to Cognitive Hierarchy Theory)
 • More intelligent
 • Have better knowledge of the system
 • Better computational capabilities
 Generate better \hat{f}_i
Application to Wide Area Protection

• Wide area monitoring and protection schemes:
 • Rely on global data
 • React to disturbances
 • Ex: disconnection of a transmission line, generator, or load shedding
 → Availability of a physical node dependent on spread cyber nodes
• Dependability vs Security
 • Dependability: successful isolation of a fault when it happens
 • Security: take protection actions only when disturbance occurs.

PJM 5-bus system:
Application to Wide Area Protection

• Application:
 • 1 attacker vs. 1 defender
 • # concurrent attacks = 2
 • # secured nodes = 2
 • Energy markets implications
 • Optimal Power Flow
Application to Wide Area Protection

- V^O: value function of the original OPF ($/h$
- V^{pi}: value function of the OPF with loss of p_i ($/h$
- T^{pi}: time needed to bring p_i back to operation (h)
- CR^{pi}: cost of repair of p_i

\[f_{pi} = (V^{pi} - V^O)T^{pi} + CR^{pi} \]

Nash equilibrium strategies:

\[
\gamma_d^* = [0.2931, 0.3034, 0.3107, 0.0842, 0.0047, 0.0040]
\]
\[
\gamma_a^* = [0.1276, 0.1244, 0.1222, 0.1922, 0.2167, 0.2169]
\]

\[\bar{U}_d = -\bar{U}_a = -$110,240 \]
Application to Wide Area Protection

- **Bounded rationality:**
 - Requirements for the solution of the OPF:
 - knowledge of the full system
 - high computational capabilities
 - 3 types of attackers:
 - Level 0 \((l_0) \): chooses attack randomly
 - Level 1 \((l_1) \): attacks line with highest power flow
 - Level 2 \((l_2) \): can solve OPF, attacks line with highest \(f_{p_i} \)
 - Defender:
 - Can solve OPF
 - Strategic thinker
 - Highest level thinker
Application to Wide Area Protection

• Defender faced with an attacker of type k with probability:

$$\alpha(k) = \frac{e^{-\lambda} \lambda^k}{k!} \rightarrow \text{Poisson distribution}$$

$$\begin{align*}
\alpha(0) &= \alpha(1) = \alpha(2) = \tau \\
\alpha(0) + \alpha(1) + \alpha(2) &= 1
\end{align*}$$

• $\tau < 1 \rightarrow$ a low level attacker is most probable

• $\tau > 1 \rightarrow$ a high level attacker is most probable

• Optimal defense against: $\alpha(0)l_0 + \alpha(1)l_1 + \alpha(2)l_2$
Application to Wide Area Protection

- Advantage for accounting for multiple possible types of attackers
- Probability of facing a higher attacker *increases*, the gain from deviating from the NE *decreases*
Conclusions

• Introduced general CPS security model showing propagation of attacks from cyber to physical
• Attacker vs. Defender Game
• Bounded rationality
• Application to wide area protection
 • Optimal defense strategy accounting for multiple attacker types
 • Beneficial deviation from the NE defense strategy
ACKNOWLEDGEMENT

National Science Foundation

Contact information: anibals@vt.edu, walids@vt.edu

Thank you!

Questions…